FOXM1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin
نویسندگان
چکیده
Docetaxel is commonly used as an effective chemotherapeutic drug for gastric cancer patients recently. With the increasing emergence of docetaxel resistance nowadays, identification of suitable biomarkers for predicting chemosensitivity to docetaxel may be a key role for improving therapeutic effects for gastric cancer patients. In this study, we investigated the correlation between the expression of transcription factor forkhead box protein M1 (FOXM1) and chemotherapy response to docetaxel in gastric cancer, the possible mechanism for which was further explored. As a result, FOXM1 overexpression was shown to mediate resistance to docetaxel in gastric cancers. It altered microtubule dynamics to protect tumour cells from docetaxel-induced apoptosis. Mechanistic investigations revealed that tubulin-destabilizing protein Stathmin, which mediated docetaxel resistance in FOXM1-silenced gastric cancer cells, is a direct down-stream target of FOXM1, whereas another microtubule dynamics protein mitotic centromere-associated kinesin (MCAK), shown to be related to docetaxel resistance in gastric cancer cells, is not associated with FOXM1 expression significantly. These results were further provided by immunohistochemical analysis, indicating that FOXM1 and Stathmin expression levels were correlated in 103 post-operational gastric cancer specimens. Moreover, when we attenuated FOXM1 expression with FOXM1 inhibitor thiostrepton, docetaxel resistance in gastric cancers was found to be reversed, simultaneously with the down-regulation of FOXM1 and Stathmin. Therefore, FOXM1 can be a useful marker for predicting and monitoring docetaxel response. Through the inhibition of FOXM1, docetaxel resistance can be reversed, and thus FOXM1 could be a new therapeutic target in docetaxel-resistant gastric cancer.
منابع مشابه
MiR-361-5p suppresses chemoresistance of gastric cancer cells by targeting FOXM1 via the PI3K/Akt/mTOR pathway
Gastric cancer is a prevalent cancer and chemotherapy is a main treatment for patients. Docetaxel is commonly used as a chemotherapeutic drug for gastric cancer patients. With the increasing emergence of docetaxel resistance, exploring the mechanism of chemoresistance may improve prognosis of patients. In this study, we found that overexpressed miR-361-5p suppressed chemoresistance to docetaxel...
متن کاملStathmin is a potential molecular marker and target for the treatment of gastric cancer.
OBJECTIVE This study is to investigate the expression levels of stathmin in tissues of gastric cancer, and evaluate the therapeutic effects of stathmin antisense oligodeoxynucleotide (ASODN) and/or docetaxel in human gastric cancer cells. METHODS Immunohistochemistry was performed to detect the expression levels of stathmin in gastric cancer and adjacent tissues. Stathmin ASODN was transfecte...
متن کاملFoxM1 mediates resistance to herceptin and paclitaxel.
Inherent and acquired therapeutic resistance in breast cancer remains a major clinical challenge. In human breast cancer samples, overexpression of the oncogenic transcription factor FoxM1 has been suggested to be a marker of poor prognosis. In this study, we report that FoxM1 overexpression confers resistance to the human epidermal growth factor receptor 2 monoclonal antibody Herceptin and mic...
متن کاملDepletion of FOXM1 via MET Targeting Underlies Establishment of a DNA Damage-Induced Senescence Program in Gastric Cancer.
PURPOSE Deregulated signaling via the MET receptor tyrosine kinase is abundant in gastric tumors, with up to 80% of cases displaying aberrant MET expression. A growing body of evidence suggests MET as a potential target for tumor radiosensitization. EXPERIMENTAL DESIGN Cellular proliferation and DNA damage-induced senescence were studied in a panel of MET-overexpressing human gastric cancer c...
متن کاملStathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK
Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2014